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The calculation of the normal modes of vibration of a crystal in general requires the 
diagonalization of the dynamical matrix for wave vector q, which has rank 3n, where n 
is the number of atoms per unit cell. The symmetry of the crystal can be used to block 
diagonalize the dynamical matrix using group representation theory. Here we describe. a 
subroutine, named BLOCDI that computes the unitary matrix which group theoretically 
block diagonal&s the dynamical matrix for any crystal structure and wave vector. 

The input to the subroutine is first put into a form that is generally acceptable for all 
crystal structures. This is made possible by specifying the structure in terms of integer 
variables which relate to the primitive axes. The projection operator is used to generate 
and print out possible symmetry coordinates, labeled according to their irreducible 
representation and site symmetry. The set of coordinates to be used in the construction 
of the transformation matrix is then easily selected by inspection from the printed sets. 
In a second run the selected coordinates are computed and the nonzero values of the 
matrix and their indices are stored in singly dimensioned arrays. 

Possible reductions due to time reversal symmetry are not considered. There is 
essentially no restriction on the size of the unit cell. The actual transformation of the 
dynamical matrix (using the output of BLOCDI) becomes a time and storage problem 
long before the computation and indexing of the nonzero elements of the transformation 
matrix becomes a problem. 

I. INTRODUCTION 

The symmetry of a crystal greatly simplifies the computation of its normal 
vibrational modes. In the harmonic approximation lattice translations and the 
assumption of periodic boundary conditions reduce the task from that of diago- 
nalizing a matrix of rank 3% (where N is the number of primitive, or Bravais, 
unit cells in the chosen volume of periodicity and n is the number of atoms in 
the primitive cell) to that of diagonalizing N matrices of rank 3n [l]. Each of 
these N matrices corresponds to a wave vector in the “allowed’ set of N-wave 
vectors in a single Brillouin zone of the reciprocal lattice. This is an enormous 
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simplification of the general problem, especially since it is formally accomplished 
for any crystal structure. 

For certain wave vectors q, additional simplifications are often possible owing 
to symmetry operations other than lattice translations. These additional symmetry 
operations form a group Fa , known as the group of the wave vector [2]. Fq depends 
not only on the q but on the space group of the crystal as well. Furthermore, 
the specific unitary matrix which block diagonalizes the dynamical matrix depends 
not only on F, but also on the sites of the various atoms in the primitive cell. 
The point is that, whereas the block diagonalization arising from lattice translations 
has general applicability, any additional reductions are only obtained by consid- 
ering a particular wave vector and a particular crystal structure. 

The general approach to this problem (group representation theory [3]) is well 
understood but its application (if done by hand) is very tedious and time consuming 
if 12 is large, and often, human errors result. Also, because of the large number 
of specific cases that must be accounted for, the problem is one which appears 
difficult to program for the computer in a general way. 

Recently, however, Worlton and Warren [4] have presented a program which 
is reported to be rather generally applicable to this problem, although they do 
restrict the size of the unit cell to IZ < 20. Also, their program is quite large 
(1600 cards) since in endeavoring to reduce the input to a minimum, they construct 
the space group from atomic positions. Also, their program constructs a dynamical 
matrix symmetry, reduces it, and carries out the block diagonalization. 

We have found that for large N, a more satisfactory approach is possible 
whereby one first puts the information defining the crystal structure and wave 
vector into a form which is generally applicable for all crystal structures and 
wave vectors. As we shall see, this is not a difficult task, and as a result, the program 
required to carry out the computations is greatly simplified. 

In the sections that follow we present and discuss a computer subroutine named 
BLOCDI, consisting of 135 cards in FORTRAN, which is designed to compute 
the unitary matrix which group theoretically block diagonalizes the dynamical 
matrix for any wave vector and any crystal structure. In Section 2 we review the 
general theory that goes into the computations. In Section 3 we describe the 
input and output for BLOCDI in general, and illustrate its use by considering a 
specific example having space group 14,/a and 18 atoms per primitive cell. In 
Section 4 we discuss how the subroutine works by relating specific computations 
in the routine to the general theory. A listing of BLOCDI is given in the appendix. 

II. SUMMARY OF THE GENERAL THEORY 

For a general review of the subject matter summarized in this section see 
Boyer [5]; [3, 6-81 may also be helpful in this regard. 
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Let w”(j, q) be the jth eigenvalue and e&j, q) the (ode) component of the eigen- 
vector of the dynamical matrix, D&k’, q), for wave vector q. That is, 

2 D&k’, d edk’i Q) = w”(j, Q) e&j, d. (1) 

The indices, cx and fl, refer to the axes of a Cartesian coordinate system while k 
and k’ take on values from 1 to n and label the various atoms within the primitive 
(or Bravais) unit cell. 

Let F be the factor group of the space group with respect to the lattice trans- 
lations. The elements of F are actually sets of symmetry operations where each 
set is made up of those operations of the space group which differ only by lattice 
translations. Thus, the pth element of F is given by a rotation and (or) reflection 
part, B;“, , plus a translation, t", where the translation is not a nonzero lattice 
vector. Let x(l, k) be the position of the k atom in the Ith cell with respect to a 
chosen Cartesian coordinate system. A new coordinate system p, may be obtained 
from the chosen one by applying the pth operation in 10. With respect to the pth 
frame the position of the (I, k) atom is given by 

(2) 

Since p is a symmetry operation there exists an atom, (I, , k,) such that 

XV, 4 = ~(4, , k,) (3) 

and k, is the same kind of atom as k. 
It can be shown that under the operations p, the eigenvectors of the dynamical 

matrix for wave vector q, satisfy the relation 

(4) 

where qo is defined by 

Equation (4) defines a 3n x 3n representation of F, where F, is that subgroup of F 
for which qD and q differ only by a reciprocal lattice vector. 

It is convenient to define a single index i, from the two indices 01 and k by 

i = (a - 1)n + k, (6) 

so that the elements of the dynamical matrix and the representation matrices are 
written Dti(q) and &(p). One constructs the unitary matrix U,(q), which block 
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diagonalizes the dynamical matrix, from symmetry coordinates obtained from the 
projection operator 

GM = 1 xY*h d &h), (7) 
P 

where xy(p, q) is the character of the pth operation in the vth irreducible representa- 
tion of F, and the summation is over those p in F,, . The number of linearly inde- 
pendent coordinates, obtained by applying P’(q) to arbitrary 3n-dimensional 
column vectors, is the dimension of the vth irreducible representation d,,(q), 
times its multiplicity, 

w(cr> = $ c x”*(P, s> X(P), 
P 

(8) 

where x(p) is the character of R(p) and g, is the number of elements in Fq . When 
orthonormalized and arranged in groups with the same v, these coordinates form 
the matrix U(q). The block diagonalized dynamical matrix, 

B(q) = U+(s) D(a) U(q), (9) 

consists of p(q) matrices of rank d,(q) m,(q) where p(q) is the number of irreducible 
representations of F, . 

III. DESCRIPTION OF SUBROUTINE BLOCDI 

A subroutine named BLOCDI is listed in the appendix which consists of 
approximately 130 FORTRAN statements. Its function is to determine m,(q) and 
U(q) as described in the previous section given the crystal structure, the wave 
vector, and the characters of the irreducible representations of F, . We first 
consider the zero wave-vector problem and illustrate the use of BLOCDI by 
treating a specific crystal structure with space group symmetry 14,/a - C$, . 

The computation of U requires two steps. In the first, a run is made with the 
logical variable CALCU assigned the value .FALSE. . When CALCU is so 
assigned, the multiplicities are computed and sets of allowed symmetry coordinates, 
obtained by applying the projection operator to appropriate subspaces of the 
representation given by Eq. (4), are printed. The symmetry coordinates to be 
used in the construction of U are then selected (by hand) from the printed sets 
and indexed by assigning values to the arrays MULT and IVEC. In practice this 
is not difficult as we shall demonstrate for our example. In the second run we set 
CALCU = .TRUE. and U is constructed from the selected symmetry coordinates. 
All input variables and all output variables are listed in a COMMON block 
named MB, We first define all input necessary for the use of BLOCDI when 
CALCU = .FALSE. . 
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The number of irreducible representations of F0 = F is given by NIREP and 
the number of elements (symmetry operations) in F, by NING. CHAR(Z, J) is 
the character of the Jth element of F0 in the Zth irreducible representation. For 
our example, we need the point group 4/pn - C,, which has NING = 8 symmetry 
operations and whose character table is that listed in Table 1. The order in which 
the indices Z and J are assigned to the irreducible representations and group 
elements is arbitrary. The two E, and the two E, representations are each con- 
sidered separately and thus we have NIREP = 8. 

TABLE I 

Character Table for the Point Group 4/m - Cdn and the 
Corresponding Values For CHAR(Z, J). 

J 
Z 1 2 3 4 5 6 7 8 

1 1 1 1 1 1 1 1 1 A, 
2 1 1 -1 -1 1 1 -1 -1 & 
3 1 -1 i -i 1 -1 i -i 
4 1 -1 -i j 1 -1 -i . Eli 

5 1 1 1 1 -1 -1 -1 

-‘1 

AU 
6 1 1 -1 -1 -1 -1 1 1 BU 
7 1 -1 i -i -1 1 --i i 
8 1 -1 -i i -1 1 i -i EU 

E G G Cd i iC, iC, iC,% 

For our example we assume a crystal structure having two A atoms occupying 
b sites (in Wyckoff notation), four B atoms and four C atoms occupying e sites, 
and eight D atoms occupying f sites. For convenience in the subsequent discussion 
we say that for q = 0, two atoms have the same site symmetry if they have the 
same Wyckoff symbol. Later on in the discussion we will use the term “site sym- 
metry” in connection with Fa for q # 0. 

To determine the crystal structure input to BLOCDI for q = 0, we begin by 
constructing a table corresponding to the appropriate space group which is very 
similar to that given in the International Tables for X-ray Crystallography [9]. 
This new table is obtained by modifying the corresponding table in [9] in the 
following ways. 

1. The coordinates of all equivalent positions must be taken with respect to 
the primitive axes of the lattice. For many space groups the coordinates 
in [9] are already with respect to the primitive axes. In our example, 
however, they are listed with respect to the tetragonal axes. The 

581/16/z-6 
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primitive lattice vectors in this body centered system are a1 = (a, a, c), 
a, = (-a, -a, c), and a3 = (a, -a, -c) where a and c are the two lattice 
constants. 

2. The coordinates of the equivalent positions are scaled by some appropriate 
integer value L, so that the coordinates of a general position 
(y,/L) a, + (y,/L) a2 + h/L) a3 are (ul , y2 , y3). The value of L is chosen 
so that the coordinates of the equivalent positions for all site symmetries 
can be represented by integer values. 

3. The order of the equivalent positions for the most general site symmetry 
are listed to correspond to the order in which the characters (CHAR(1, J), 
J = 1, 2 ,..., NING) are listed. 

TABLE II 
The Number, Site Symmetry and Coordinates of Equivalent Positions in a Primitive Unit Cell 
with Space Group 14,/a - Ci,, . Coordinates are taken with Respect to the Primitive Axes and 
in Units where the Length of the Primitive Lattice Vectors (a, a, c), (-a, -a, c), + (a, --a, -c) 
is 8. Also listed are the Symbols for the Nontranslational Parts of the Elements in FO as they 
Correspond to the Coordinates of Equivalent Positions for the Most General Site Symmetry. 

Site Symmetry 

Index for Symbol for 
Occupied nontranslational 

Number of Wyckoff Sites Coordinates of part of the 
Positions Notation Z Equivalent Positions elements in FO 

(Yl 9 Yz , Yz) E 
6% - Y, t Yl - Ys , --Y3 G 

Occupied by (2 + Ye , 6 + ya - Y, , 4 - yl + ve) C, 
8 F D atoms (2 + ~1 - ys 96 + ~194 + YI - VJ Cd2 

z=3 (2 - Y, ,6 - Y, 34 - YJ 
(2 - y, + y3 , 6 - Y, + y, , 4 + y3) ik 

C-h , --Ye + Ys , Yl - Yz) iC, 
C-Y1 + Y3 f --Yl 9 --Y1 + Yz) iCd8 

4 e Occupied by (x,x,O);(2+~,6+~,4) 
B and C atoms (-x, -x, 0); (2 - x, 6 - x, 4) 

I=2 

4 d Not occupied (5,3,6); (5, 7,2); (5, 3,2); (7, 3,6) 

4 C Not occupied (1,7, 6); (1, 3,2); (1, 7,2); (5,7,6) 

2 b Occupied by (4,490); (6,294) 
Aatoms;Z= 1 

2 U Not occupied (0.0.0); (2, 6,4) 
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The crystal structure input can now be taken directly from Table 2. NOFSG is 
the number of occupied site symmetries; for our example NOFSG = 3. NINSG(1) 
is the number of equivalent positions with site symmetry I. The order in which I 
is associated with the occupied site symmetries is not important. However, once 
the order is chosen the index k, of the dynamical matrix must be defined in a 
consistent manner (see Eq. (10)). For our example we let I = 1 correspond to 
b sites, I = 2 to e sites and I = 3 to f sites. Thus, we have NINSG(l) = 2, 
NINSG(2) = 4, and NINSG(3) = 8. NIONSG(1) is the number of nonequivalent 
atoms with site symmetry I. For our example we have NIONSG(1) = 1, 
NIONSG(2) = 2, and NIONSG(3) = 1. LATCON is the value of L; in our 
case LATCON = 8. 

The arrays ITRAN AND IFE, which, respectively, denote the translational 
and nontranslational components of the elements of F,, , are taken directly from 
the coordinates of equivalent positions for the most general site symmetry regard- 
less of whether it is occupied or not. Specifically, ITRAN(1, .7) is the Jth component 
of the translation associated with the Ith equivalent position while IFE(I, J, K) 
is the coefficient of yK in the Jth component of the Ah position. Here, 
I = 1, 2,..., NING refers to the order in which these equivalent positions are 
written, which, as was mentioned above, is the same order used in writing the 
character table. The values of ITRAN and IFE for our example are shown in 
Table 3. 

The array LX(1, J, K) denotes the Kth component of a pertinent set of 
J = 1, 2,..., NINSG(I), equivalent positions with site symmetry I with the require- 
ment that 0 < LX(1, ,7, K) < L. For our example we determine LX by choosing 
y1 = 1, y, = 2, y3 = 3, and x = 1 ( see Table 2) with the resultant array given 

TABLE III 

Values for the Arrays IFE and ITRAN Used As Input To Subroutine BLOCDI 
which Define the Space Group Operations of 14,/a - Ci, 

IFE(Z, .Z, K) ITRAN(Z, J) 
Z (J, K) J 

(191) (132) (L3) (2,l) (2,2) (2, 3) (3,l) (3,2) (3,3) 1 2 3 

1 0 0 0 1 0 0 0 1 0 0 0 
0 1 -1 1 0 -1 0 0 -1 0 0 0 
0 1 0 0 1 -1 -1 1 0 2 6 4 
1 0 -1 1 0 0 1 -1 0 2 6 4 

-1 0 0 0 -1 0 0 0 -1 2 6 4 
0 -1 1 -1 0 1 0 0 1 2 6 4 
0 -1 0 0 -1 1 1 -1 0 0 0 0 

-1 0 1 -1 0 0 -1 1 0 0 0 0 
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TABLE IV 

Values of the Array LX(Z, J, K) Representing the Equivalent Positions For Site Symmetries 
Z = 1,2, and 3, or, in Wyckoff notation, respectively, sites b, e, andf, for space group 14,~ - C& . 

The Values were obtained from Table 2 Using y1 = 1, ya = 2, ys = 3 and x = 1. 

W3, J, K) LW!, J, K) LX(1, J,‘K) 

\ J K 1 2 3 1 2 3 1 2 3 

1 1 2 3 1 1 0 4 4 0 
2 7 6 5 7 7 0 6 2 4 
3 4 5 5 3 7 4 
4 0 7 3 1 5 4 
5 1 4 1 
6 3 0 7 
7 6 1 7 
8 2 7 1 

in Table 4. Other values for yr , yz , y3 and x would work equally well. For example, 
we could have chosen x = 2. However, x = 4 is not allowed since the associated 
equivalent positions are not e sites, but rather, b sites. The order in which the 
equivalent positions are assigned to values for Z and J in LX(Z, J, K) is arbitrary, 
but once an assignment is made, the labels of the atoms in the primitive unit cell 
(k = 1, 2,..., n) in the definition of the dynamical matrix must be assigned as 
follows. In general, we require 

k = NI + (N - 1) * NINSG(Z) + J, (10) 

where NI is the total number of atoms with site symmetries 1, 2,..., Z - 1; N is 
the Nth nonequivalent atom with site symmetry Z (N = 1,2,..., NIONSG(Z)), 
and J is the second index in LX. For our example, suppose the B(C) atoms are 
located at positions given by x = xB(x = xc) and the D atoms at positions given 
by y1 = ylD, y2 = JJ,~ and y3 = y3D. k = 1 and k = 2 refer, respectively, to the 
A atoms at (4,4,0) and (6,4,2). k = 3, 4, 5 and 6 refer, respectively, to the 
B atoms at (xB , x, , 0), (-xB , --xB , 01, (2 + xE ,6 + xB ,4), and (2 - xB , 
6 - xE ,4) while k = 7, 8, 9 and 10 refer, respectively, to the C atoms at 
(xc,xc, Oh (-xc, --xc, 01, (2 + xc, 6 + xc, 4), and (2 - xc, 6 - xc, 4). 
Alternatively the k assignment for the B and C atoms could be that obtained by 
interchanging letter B and letter C in the previous statement. k = 11, 12,..., 18 
refers to the sequence of D atoms located at positions given by the order in which 
they are listed in Table 2, since this was the order chosen for the representative 
positions LX(3, J, K), J = I,2 ,..., 8. 
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As we remarked earlier, the (Y and /? indices in Eqs. (l), (2), (4) and (5) refer to 
components along some chosen Cartesian coordinate system. Let A be the matrix 
given by 

AaB = aa6, 

where a,B is the /3th component (with respect to the Cartesian system) of the 
primitive lattice vector a,. In BLOCDI, T(Z, J) is the (Z, J) component of A 
while TI(Z, J) is the corresponding element of A-l. For our example, we choose 
the usual tetragonal axes for our Cartesian system, which gives 

For convenience we may take a = c = 1 with the resulting values of T and TI 
given in Table 5. 

TABLE V 

Values for the Arrays T and TI of BLOCDI Relating the Transformation, and 
its Inverse, from the Tetragonal Axes to the Primitive Axes of a Body 

Centered Tetragonal System 

‘W, J) TWA J) 
J 

\ Z 1 2 3 1 2 3 

1 0.5 -.5 0.5 1.0 0.0 1.0 
2 0.5 -.5 -.5 0.0 -1.0 1.0 
3 0.5 0.5 -.5 1.0 -1.0 0.0 

Finally, INV(Z) where Z = 1, 2 ,..., NING is the index for the inverse of the 
Zth element of F, . In our example INV(Z) = 1,2,4,3, 5,6, 8, 7, respectively, 
for Z = 1, 2 ,..., 8. 

We have now defined all the input variables necessary for the use of BLOCDI 
with CALCU = .FALSE. ; namely, NING, NIREP, CHAR, NOFSG, NINSG, 
NIONSG, LATCON, ITRAN, IFE, LX, T, TI and INV. When the program is 
run with CALCU = .FALSE. the variables MULT(Z, J) and MNUQ are com- 
puted and symmetry coordinates obtained using the projection operator, Eq. (7), 
are printed. MULT(Z, J) is the multiplicity of the Jth irreducible representation 
arising from the Zth site symmetry. MNU(Z) is the total multiplicity of the Zth 
irreducible representation which is simply the product of MULT(J, Z) and 
NIONSG(J) summed over all site symmetries J. The values of MULT and MNU 
for our example are given in Table 6. 
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TABLE VI 

Multiplicities for the Three Site Symmetries MULT, and the Total 
Multiplicifies MNU, for our Example 

J 1 2 3 4 5 6 7 8 

MULT(l, J) 0 1 1 1 1 0 1 1 
MULT(2, J) 1 1 2 2 1 1 2 2 
MULT(3, J) 3 3 3 3 3 3 3 3 
MNU(J) 5 6 8 8 6 5 8 8 

Let S,(i) be the jth component of a 3ndimensional column vector with a zero 
for each component except j = i which has the value 1. Let xjV(i) be the jth com- 
ponent of the vector obtained by applying P” (Eq. (7)) to S(i). Necessarily, the 
nonzero components of x”(i) correspond to atoms which are the same or equivalent 
to the atom given by i (see Eq. (6)). For our example n = 18 and the B atoms 
are k = 3, 4, 5 and 6. Thus, for i = 3,4, 5, 6,21,22,23,24, 39,&J, 41 and 42, 
q”(i) = 0 for j = 1, 2, 7, 8 ,..., 19, 20, 25, 26 ,..., 37, 38, 43, 44 ,..., 53 and 54. Fur- 
thermore, since the B and C atoms have the same site symmetry and since the 
sequence of k values given to the B atoms is the same as that given to the C atoms, 

$.+l(i + 4) = xi(i), (11) 

where i and j take on values corresponding to the B atoms. The information 
printed by BLOCDI is a convenient listing of those portions of the column vectors 
xv(i), for all irreducible representations v, and site symmetries i, that are not 
necessarily zero. 

In Table 7 we show that portion of the printout corresponding to the third 
irreducible representation and the first and second site symmetries. For site 
symmetry No. 1 there are 12 columns with six numbers in a column. The first 
two columns are the real and imaginary parts of the components of x3(1) which 
are not necessarily zero. The second two columns similarly correspond to x3(2), 
the third two columns to x3(19), etc. Reading down a column, the first through 
sixth numbers correspond, respectively, to the components j = 1,2, 19,20, 37 
and 38. The 12 double columns under the heading site symmetry No. 2 have similar 
meanings. For example, the sixth number in the eighth column (-2.00) is the 
imaginary part of x:,(6) which is also the imaginary part of x&(10) by Eq. (II). 

The number of linearly independent and nonzero vectors in the (Z, .Z) set, 
where Z and J refer to the site symmetry and irreducible representation indices, 
is the dimension of the Zth irreducible representation times MULT(Z, J). One must 
choose this number of vectors from the (Z, J) set which are mutually orthogonal 
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to be used in the construction of U. In principle, this may not always be possible, 
and for such cases one would need to include an orthogonalization routine to be 
used when needed. In practice, however, such cases are certainly rare (if indeed 
they exist at all) when the Cartesian axes are chosen to correspond to symmetry 
directions in the crystal. This is discussed in greater detail in Section 4. 

For the second run in which CALCU = .TRUE. the arrays MULT and IVEC 
must be assigned the appropriate values and used as input to BLOCDI. MULT(Z, .Z) 
is the number of mutually orthogonal vectors in the (Z, .Z) set where Z refers to 
the site symmetry and J to the irreducible representation. In our example, since 
the dimension of all irreducible representations is 1, the values for MULT are 
those shown in Table 6. IVEC(Z, J, K) denotes which vectors are selected from the 
(Z, J) set to be used in the construction of U. For example, from the (2,3) set 
in Table 7 we may choose the first and second vectors and thus require 
IVEC(2, 3, 1) = 1 and IVEC(2, 3, 2) = 2 or we could have selected the fourth 
and fifth vectors which give IVEC(2, 3, 1) = 4 and IVEC(2, 3, 2) = 5. 

The second run of BLOCDI, with CALCU = .TRUE. and the values of the 
arrays MULT and IVEC appropriately assigned, determines the matrix U which 
block diagonalizes the dynamical matrix. The nonzero values of U are stored in 
the singly dimensional array U(Z), and the i, j indices of Uij corresponding to U(Z) 
are given by II(Z) and JJ(Z). The number of nonzero values is given by KOUNT. 

We now discuss the use of BLOCDI for constructing U(q) for nonzero wave 
vectors. For nonzero wave vectors additional degeneracies not predicted from 
the group Fq are possible owing to time reversal symmetry. BLOCDI gives the 
group theoretical reduction due to Fq . 

We illustrate the use of BLOCDI for nonzero wave vectors by considering 
phonons with wave vectors along the [OOl] symmetry axis in the example crystal 
given above. It is customary to denote wave vectors in this direction by (1 if it 
is within the Brillouin zone and by Z if it is on the zone boundary [lo]. If q = qz 
then the problem is no different from that discussed above, for F, is the same 
whether q = qz or q = 0. Recall that F, is that subgroup of F for which 
qp = q + Q where Q is a reciprocal lattice vector and q0 is defined by Eq. (5). For 
those elements involving the inversion operation (see Table 2), qzp = -qz , 
but since 2q, is a reciprocal lattice vector, qzo = q, + Q is satisfied. qz is 
unchanged (differs by Q = 0) by those elements not involving the inversion 
operation. Thus Fuz = F just as F,, = F and hence U(q,& = U(0). 

For q = q, , Fq,, contains those elements of F that do not involve the inversion 
operation. The input to BLOCDI is determined in a manner completely analogous 
to that described above for q = 0. The only differences are (1) the character 
table is that for the point group C, , and (2) a new table similar to Table 2 must 
be constructed in which the equivalent positions and site symmetries are based 
on the elements in Fb, . The new character table is that portion of Table 1 for 
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TABLE VIII 

The Number, Site Symmetry and Coordinates for Occupied Equivalent positions, in analogy with 
Table 2, but for Wave Vector q = q4 . Also listed are the Symbols for the nontranslational 
Parts of Fan as they Correspond to the Coordinates of Equivalent Positions for the Most General 

Site Symmetry. 

Symbol for the 
nontranslational 

Number of Site Symmetry Index I, Coordinates of part of the 
Positions for Occupied Sites Equivalent Positions elements in Fan 

65 > Ya I Ya) E 
z=3 (Ya - Ya ,YI -YY, Y --Ys C2 

4 Occupied by 01 and 011 (2 + Y, , 6 + ya - Y, , 4 - yl + YA C4 
atoms (2 + Y, - ~a, 6 + YI , 4 + YI - ~a) G8 

z=2 
2 Occupied by BI , BII , CI (x, x, 0); (2 + x, 6 + x, 4) 

and CI~ atoms. 

Z=l 
2 Occupied by A atoms (4,4,0>; (6,2,4) 

which I and J take on values from l-4. Of course, we now have NIREP = 4 and 
NING = 4. The table analogous to Table 2 is shown in Table 8. 

The values for the arrays IFE and ITRAN are obtained from the equivalent 
positions for the most general site symmetry (I= 3 in Table 8) exactly as they 
were obtained for zero wave vector problem using Table 2. As before we have 
three occupied symmetries, so NOFSG = 3. However, now the eight D atoms 
must be treated as two sets of four atoms labeled D, and D,, . Similarly the four B 
(four C) atoms become two BI and two BII (two C, and two C,,) atoms. Thus we 
now have NINSG(3) = 4, NINSG(2) = 2, NIONSG(3) = 2, and NIONSG(2) = 4. 
On the other hand, the q = qn vibrations do not destroy the equivalence of the 
A atoms so we have NINSG(1) = 2 and NIONSG(l) = 1 as we did for q = 0. 
The representative positions, LX(1, J, K), for the three site symmetries may be 
determined by again selecting y1 = 1, y, = 2, y3 = 3 and x = 1. In the discussion 
for q = 0 we described in detail how the values for k, used in the definition of 
the dynamical matrix, must be chosen in a manner consistent with (1) the order 
of the site symmetries, and (2) the order of the representative positions within a 
given site symmetry. We emphasize this point again here. In fact, as a consequence 
of the order chosen for the representative positions of site symmetry, I = 2, for 
q = 0; the resulting values assigned to k are not allowed for q = q,, . Specifically, 
the k assignment given above has k = 3, 4, 5 and 6 corresponding, respectively, 
to BI , BII, B, and BII atoms whereas the allowed k assignment for q = qn must 
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be such that the BI atoms and the BIr atoms each have consecutive values, and 
similarly for the C, and C,, atoms. 

Clearly, the values for LATCON, T, and TI for q = qn are the same as for 
q = 0. Also, the value given by INV(Z) for Z = 1, 2, 3 and 4 are the same as given 
above. 

This completes the definition of all the input variables for running BLOCDI 
with CALCU = .FALSE. for q = q,, . The arrays IVEC and MULT required 
for the second run, with CALCU = .TRUE. , are determined in the same way 
as we described for q = 0. 

IV. How SUBROUTINE BLOCDI WORKS 

The purpose of this section is not to give an extremely detailed account of how 
BLOCDI works, but rather, to relate in a general way the computations to the 
theory. Knowing the general theory and the definitions of the input and output 
variables (Sections 2 and 3), a reader with a basic understanding of FORTRAN 
programming may readily determine the details. 

Subroutine BLOCDI is listed in the appendix. The cards are numbered sequen- 
tially from l-135 in the right-hand columns. All dimensioned variables except 
NX, FEE, KFE, PJ and QJ are in the common block and discussed in detail in 
Section 3. NX is always dimensioned NX(3), and FEE is given the same dimensions 
as IFE. The remaining variables are dimensioned KFE(NOFSG, NING, K), 
PJ(K3, K, 3), and QJ(K, 3) where K is the maximum value of NINSG(1) and K3 
is 3 times K. Notice that CHAR, U, PJ and QJ are complex variables. However, 
if the character table is real, these variables may all be specified as reals. In the 
following discussion we use the card numbers to refer to different sections of the 
subroutine; for example, (9-40) designates that section of BLOCDI beginning 
with card number 9 and ending with card number 40. 

Section (9-40) determines the representation matrices defined by Eq. (4). There 
is no need to assign values to all elements of the matrices R(p). All that is required 
are the 80 matrices and k, . Furthermore, k, does not need to be specified in its 
entirety since k and k, must refer to dynamically equivalent atoms. Section (9-32) 
computes an array KFE(Z, J, K) which contains the information in k, . The 
indices Z, J and K refer, respectively, to the site symmetry, the elements in Fq 
and k. K is not the exact value of k (Eq. (10)) but takes on values from 1 to 
NINSG(Z) corresponding to the equivalent positions in the representative sets, 
LX. KFE is computed by applying the operations of F, (IFE and ITRAN) to 
the positions LX, to determine new positions NX. For each new position the LX 
positions are searched to see which is the same as the new position, and its index 
is the value assigned to KFE. 
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Section (33-40) computes the matrices 00 (FEE in BLOCDI) from the corre- 
sponding integer matrices IFE, using T and TI. Recall that IFE gives the non- 
translational parts of the elements in F,, with respect to primitive axes, while the e0 
are with respect to the chosen Cartesian system. 

If CALCU = .TRUE. , card number 41 transfers control to card 85, and U, 
II, JJ and KOUNT are computed in section (85-131). If CALCU = .FALSE. , 
section (42-83) is executed where the multiplicities are computed and possible 
symmetry coordinates printed. The multiplicities (MULT and MNU) and the 
coordinates (PJ) are determined using Eqs. (8) and (7) as described in Section 3. 
Here PJ(I, J, K) is the (J, K) component of the Ith coordinate where J labels the 
atoms in the representative sets LX, and K labels the Cartesian components. 

Clearly, the format for printing these coordinates, or column vectors, may be 
changed if desired. For example, if one wants six column vectors across the 
printed page, then the 8 in cards 65, 70 and 79 must be replaced by 6. Also, if PJ 
is real, then these cards may be appropriately changed to accomodate more 
columns per page. The term 0.001 in card 82 is to insure that MULT will not be 
rounded down to the wrong integer value as a result of round of error in updating 
CA. Although CA is specified as complex, its imaginary component will be zero 
and its real part very near integer values when card 82 is executed, provided, of 
course, the input is correct. In fact, CA may be printed at this point to isolate 
input errors according to site symmetry and irreducible representations. Another 
check on the validity of the input is to check to be sure that the number of inde- 
pendent vectors in each set of PJ’s is given by the multiplicity times the dimension 
of the irreducible representation for that set. 

Now we focus our attention on the section (85-133) which is executed when 
CALCU = .TRUE. . Here, the coordinates QJ, to be used in the construction of 
the matrix U(q) are computed. Each nonzero component of QJ is a nonzero 
element in U which is stored in the singly dimensioned array U. The corresponding 
i and j indices of Vii are computed and assigned to the variables II and JJ. The 
number of these nonzero elements is given by KOUNT. 

These coordinates are computed in the same way as the PJ’s in (49-64) except 
that only the selected ones are computed. The selection is made using the additional 
input, MULT and IVEC (see (97-102)). Section (114-l 18) computes the magnitude 
of QJ and section (119-131) assigns the appropriate values to U, II and JJ and 
updates KOUNT. Due to card number 126, those values with magnitude less 
than 0.00001 are not included in U. 

In Section 3 we mentioned that if it is not possible to select, by inspection, the 
required number of orthogonal coordinates from the printed sets then some 
modification of BLOCDI would be necessary. If the selected coordinates are 
linearly independent but not necessarily orthogonal, then each QJ must be 
orthogonalized with respect to the previously computed QJ’s in one execution of 
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DO loop 190. Alternatively, one could rewrite BLOCDI following card 32 to first 
compute the multiplicities and then compute, select and orthogonalize the required 
number (based on the multiplicities) of symmetry coordinates, and finally, deter- 
mine U, II, JJ and KOUNT from these coordinates. While we do not rule out the 
possible necessity for such modifications in future studies, we believe that such 
cases will be rare and thus such a generalization would be unwarranted. This 
contention is based on previous lattice dynamical studies of Gd,(MoO,), [I l] 
(space group P42/m) and of two phases of Ca,,(PO,),F, [12,13] having the hexago- 
nal space groups P6,/m and P6,/mcm as well as on the example reported here. 

APPENDIX: A LISTING OF SUBROUTINE BLOCDI 

SUBROUTINE BLOCDI (CALCU) 
LOGICAL CALCU 
COMPLEX CHAR, CMPLX, CONJG, COM, U, PJ, CA, QJ 
DIMENSION CHAR(8,8), U(SOO), 11(500), JJ(500), T(3,3), TI(3,3), LX(3,8,3 

l), NX(3), NINSGO), NIONSG(3), ITRAN(8,3), IFE(8,3,3), KFE(3,8,8), PJ(24, 
28,3), MNU(I), INV(8), FEE(8, 3, 3), MULT(3, 8), IVEC(3,8,3), QJ(8,3) 

COMMON/MB/CHAR, U, T, TI, II, JJ, MNU, NINSG, MONSG, MNG, NIREP, 
IIFE, ITRAN, INV, LX, LATCON, MULT, KOUNT, IVEC, NOFSG 
DO 30 INS = 1, NOFSG 
MN = NINSG(INS) 
DO301 = l,NING 
DO 30 K = 1, NIN 
IA = INV(1) 
DO40J=1,3 
NX(J) = ITRAN(IA, J) 
DO41 L=l,3 

41 NXQ = NX(J) + IFE(IA, J, L) *LX(INS, K, L) 

43 IF(NX(J). LT. LATCON) GO TO 42 
NX(J) = NX(J) - LATCON 
GO TO 43 

42 IF(NX(J). GE. 0) GO TO 40 
NX(J) = NXQ + LATCON 
GO TO 42 

40 CONTINUE 
DO 50 L = 1, NIN 
IF(NX(1). NE. LX(INS, L, 1)) GO TO 50 
IF(NX(2). NE. LX(INS, L, 2)) GO TO 50 
IF(NX(3). NE. LX(INS, L, 3)) GO TO 50 
GOT060 

50 CONTINUE 

60 KFE(INS, I, K) = L 

30 CONTINUE 
DO701 = l,NING 

0010 
0020 
0030 
0040 

0060 
0070 
0080 

0100 
0110 
0120 
0130 
0140 
0150 
0160 

0170 

0180 
0190 
0200 

0210 
0220 
0230 

0240 
0250 
0260 
0270 
0280 
0290 

0300 

0310 

0320 
0330 
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IA = INV(1) 
DO70J=1,3 
DO70K= 1,3 
FEE(1, J, K) = 0.0 
DO70L= I,3 
DO70M = 1,3 

70 FEE(1, J, K) = FEE(1, J, K) + T(J, L)*IFE(IA, L, M)*TI(M, K) 
IF(CALCU) GO TO 110 
DO 100 IR = 1, NIREP 
MNU(IR) = 0 
DO 100 10s = 1, NOFSG 
CA = CMPLX(O.0, 0.0) 
NIN = NINSG(IOS) 
NIN 3 = NIN*3 
NION = NIONSG(IOS) 
DO 80 K = 1, NIN 
DO 81 J = 1, NIN3 
DO 81 L = 1, 3 

81 PJ(J, K, L) = CMPLX(O.0, 0.0) 
DO 80 IG = 1, NING 
COM = CHAR(IR, IG) 
COM = CONJG(COM) 
KK = KFE(IOS, IG, K) 
DO 82 J = 1,3 
JX = (J - l)*NIN + KK 
DO82L=1,3 

82 PJ(JX, K, L) = PJ(JX, K, L) + COM*FEE(IG, J, L) 
IF(KK. NE. K) GO TO 80 
DO841=1,3 

84 CA = CA + FEE(IG, I, I) * COM 

80 CONTINUE 

1 FORMAT(lX, 8(2F6.2, 1 X)) 

2 FORMAT(lH ) 

3 FORMAT(‘- IRREP NO. ‘, 12,’ SITE SYMMETRY NO. ‘, 12) 
WRITE(6,3) IR, 10s 
IMIN = 1 
IMAX = 8 

91 IF(IMAX. GE. NIN3) IMAX = NIN3 
DO90J=1,3 
DO 90 K = 1, NIN 
WRITE(6,l) (PJ(1, K, J), I = IMIN, IMAX) 

90 CONTINUE 
WRITE(6,2) 
IF(IMAX. EQ. NIN3) GO TO 92 
IMIN = IMAX + 1 
IMAX = IMAX + 8 
GO TO 91 

0340 
0350 
0360 
0370 
0380 
0390 

0400 
0410 
0420 
0430 
0440 
0450 
0460 
0470 
0480 
0490 
0500 
0510 

0520 
0530 
0540 
0550 
0560 
0570 
0580 
0590 

0600 
0610 
0620 

0630 

0640 

0650 

0660 

0670 
0680 
0690 
0700 

0710 
0720 
0730 
0740 

0750 
0760 
0770 
0780 
0790 
0800 
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92 CONTINUE 
MULT(IOS, IR) = CA/NING + 0.001 

100 MNU(IR) = MNU(IR) + MULT(IOS, IR) *NION 
RETURN 

110 NK = 0 
DO 175 I = 1, NOFSG 

175 NK = NK + NINSG(1) *NIONSG(I) 
JK = 0 
KOUNT = 0 
DO 200 IR = 1, NIREP 
NKP=O 
DO 200 10s = 1, NOFSG 
NIN = NINSG(IOS) 
NION = NIONSG(IOS) 
I = 10s - 1 
IF(1. GT. 0) NKP = NKP + NINSG(I) *NIONSG(I) 
JMAX = MULT(IOS, IR) 
IF(JMAX. EQ. 0) GO TO 200 
DO 190 J = 1, JMAX 
IV = IVEC(IOS, IR, J) 
JV = (IV + NIN - l)/NIN 
KV = IV - (JV - 1) *NIN 
DO 180 K = 1, NIN 
DO 181 L = 1,3 

181 QJ(K, L) = CMPLX(O.0, 0.0) 
DO 180 IG = 1, NING 
KK = KFE(IOS, IG, K) 
IF(KK . NFi * KV) GO TO 180 
COM = CHAR(IR, IG) 
COM = CONJG(COM) 
DO 182 L = 1,3 

182 QJ(K, L) = QJ(K, L) + COM*FEE(IG, JV, L) 

180 CONTINUE 
R = 0.0 
DO 187 K = 1, NIN 
DO 187 L = 1, 3 
COM = QJ(K, L) 

187 R = R + COM*CONJG(COM) 
R = l.O/SQRT(R) 
DO 186 M = 1, NION 
JK = JK + 1 
DO 186 I = 1, NIN 
DO 186 L = 1, 3 
COM = QJ(1, L)*R 
RR = COM*CONJG(COM) 
IF(RR.LT.l.OE-10) GO TO 186 
KOUNT = KOUNT + 1 
JJ(KOUNT) = JK 

0810 
0820 

0830 
0840 

0850 
0860 

0880 
0890 
0900 
0910 
0920 
0930 
0940 
0950 
0960 
0970 
0980 

1000 
1010 
1020 
1030 
1040 

1050 
1060 
1070 
1080 
1090 
1100 
1110 

1120 

1130 
1140 
1150 
1160 
1170 

1180 
1190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
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II(KOuNT) = (L - l)*NK + NKP + (M - l)*NIN + I 1290 
U(KOUNT) = COM 1300 

186 CONTINUE 1310 
190 CONTINUE 1320 

200 CONTINUE 1330 
RETURN 1340 
END 1350 
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